Surname	Other na	ames
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat Advanced	hematic	s C4
Friday 24 June 2016 – M Time: 1 hour 30 minute	5	Paper Reference 6666/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- · You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question. Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1. Use the binomial series to find the expansion of

2.

$$\frac{1}{(2+5x)^3}, \quad |x| < \frac{2}{5},$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a fraction in its simplest form.

(Total 6 marks)

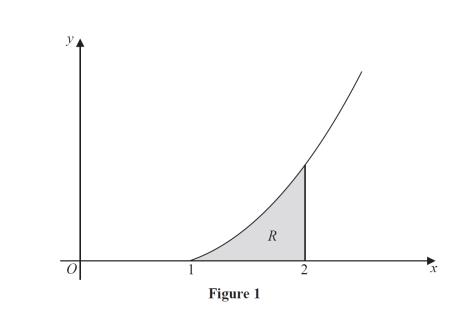


Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x$, $x \ge 1$.

The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the line x = 2.

The table below shows corresponding values of x and y for $y = x^2 \ln x$.

x	1	1.2	1.4	1.6	1.8	2
У	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

(3)

(c) Use integration to find the exact value for the area of R.

(5)

(Total 9 marks)

3. The curve *C* has equation

$$2x^2y + 2x + 4y - \cos(\pi y) = 17.$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

The point *P* with coordinates $\left(3, \frac{1}{2}\right)$ lies on *C*.

The normal to *C* at *P* meets the *x*-axis at the point *A*.

- (b) Find the x coordinate of A, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$, where a, b, c and d are integers to be determined.
- 4. The rate of decay of the mass of a particular substance is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, \quad t \ge 0,$$

where x is the mass of the substance measured in grams and t is the time measured in days.

Given that x = 60 when t = 0,

- (a) solve the differential equation, giving x in terms of t. You should show all steps in your working and give your answer in its simplest form.
- (*b*) Find the time taken for the mass of the substance to decay from 60 grams to 20 grams. Give your answer to the nearest minute.

(3)

(4)

(5)

(4)

(Total 9 marks)

(Total 7 marks)



Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4 \tan t$$
, $y = 5\sqrt{3}\sin 2t$, $0 \le t < \frac{\pi}{2}$.

The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.

(a) Find the exact value of $\frac{dy}{dx}$ at the point *P*. Give your answer as a simplified surd.

The point *Q* lies on the curve *C*, where $\frac{dy}{dx} = 0$.

(b) Find the exact coordinates of the point Q.

(2)

(4)

(Total 6 marks)

6. (i) Given that y > 0, find

$$\int \frac{3y-4}{y(3y+2)} \, \mathrm{d}y \,. \tag{6}$$

(ii) (a) Use the substitution $x = 4\sin^2\theta$ to show that

$$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x = \lambda \int_0^{\frac{\pi}{3}} \sin^2\theta \, \mathrm{d}\theta,$$

where λ is a constant to be determined.

(5)

(b) Hence use integration to find

$$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x \, ,$$

giving your answer in the form $a\pi + b$, where a and b are exact constants.

(4)

(Total 15 marks)

7. (*a*) Find

$$\int (2x-1)^{\frac{3}{2}} dx$$

giving your answer in its simplest form.

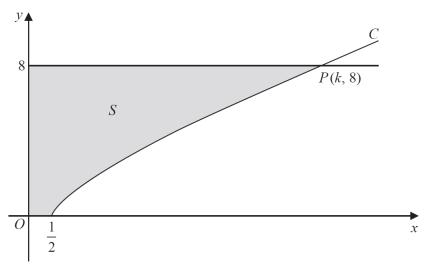


Figure 3 shows a sketch of part of the curve C with equation

$$y = (2x-1)^{\frac{3}{4}}, \quad x \ge \frac{1}{2}.$$

The curve C cuts the line y = 8 at the point P with coordinates (k, 8), where k is a constant.

(*b*) Find the value of *k*.

The finite region S, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line y = 8. This region is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Find the exact value of the volume of the solid generated.

(4)

(2)

(2)

(Total 8 marks)

8. With respect to a fixed origin O, the line l_1 is given by the equation

$$\mathbf{r} = \begin{pmatrix} 8\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -5\\4\\3 \end{pmatrix},$$

where μ is a scalar parameter.

- The point *A* lies on l_1 where $\mu = 1$.
- (*a*) Find the coordinates of *A*.

The point *P* has position vector $\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$.

The line l_2 passes through the point *P* and is parallel to the line l_1 .

- (b) Write down a vector equation for the line l_2 .
- (c) Find the exact value of the distance AP. Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

The acute angle between AP and l_2 is θ .

(d) Find the value of $\cos \theta$.

A point E lies on the line l_2 . Given that AP = PE,

(e) find the area of triangle APE,

- (f) find the coordinates of the two possible positions of E.
- (5)

(2)

(1)

(2)

(2)

(3)

(Total 15 marks)

TOTAL FOR PAPER: 75 MARKS

Question Number	Scheme		Notes	Marks
	$\left\{\frac{1}{(2+5x)^3} = \right\} (2+5x)^{-3}$		Writes down $(2+5x)^{-3}$ or uses power of -3	M1
	$= \underline{(2)^{-3}} \left(1 + \frac{5x}{2} \right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{5x}{2} \right)^{-3}$		$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$	<u>B1</u>
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^2+\frac{(-3)(-4)(-5)}{3!}(kx)^3+\frac{(-3)(-5)(-5)}{3!}(kx)^3+\frac{(-3)(-5)(-5)}{3!}(k$		see notes	M1 A1
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{5x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{5x}{2}\right)^2+\frac{(-3)(-4)(-5)}{3!}\left(\frac{5x}{2}\right)^2\right]$	³ +]		
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$			
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$			
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$			A1; A1
	or $\frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$			[6]
				6
Way 2	$f(x) = (2 + 5x)^{-3}$ Writes down	$(2+5x)^{-3}$	or uses power of -3	M1
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$	Corr	ect $f''(x)$ and $f'''(x)$	B1
	$S(x) = 15(2 + 5x)^{-4}$	±	$a(2+5x)^{-4}, a \neq \pm 1$	M1
	$f'(x) = -15(2+5x)^{-4}$		$-15(2+5x)^{-4}$	A1 oe
	$\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = -\frac{1875}{16} \right\}$			
	So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$		Same as in Way 1	A1; A1
We 2	$(2 + 5)^{-3}$			[6]
Way 3	$(2+5x)^{-3}$		Same as in Way 1 Same as in Way 1	M1 B1
			Same as m way 1	
	$= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{(2)^{-5}(5x)^2} + \frac{(-3)(-4)(-5)}{(2)^{-6}(5x)^2} + \frac{(-3)(-5)(-5)}{(2)^{-6}(5x)^2} + \frac{(-3)(-5)(-5)(-5)}{(2)^{-6}(5x)^2} + (-3)$	$(x)^3$ A		
	$= \underline{(2)^{-3}} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)}{3!}(2)^{-6}(5x)^{$	$(x)^3 \qquad A \qquad A$	ny two terms correct All four terms correct	M1 A1
	$= \underline{(2)^{-3}} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-4)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-4)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)(-5)(-5)}{3!}(2)^{-6}(5x)^2 + \frac{(-3)(-5)(-5)(-5)(-5)(-5)}{3!}(2)^{-6}(5x)^2$	$(x)^3 \frac{A}{A}$	ny two terms correct	M1
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Note: Terms can be simplified or un-simplified for	or B1 2 nd M	ny two terms correct All four terms correct Same as in Way 1	M1 A1
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Note: Terms can be simplified or un-simplified fo Note: The terms in C need to be evaluated as a second sec	or B1 2 nd M luated	ny two terms correct All four terms correct Same as in Way 1 1 1 st A1	M1 A1 A1; A1
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Note: Terms can be simplified or un-simplified for	$\frac{A}{1}$	ny two terms correct All four terms correct Same as in Way 1 1 1 st A1	M1 A1 A1; A1

		Question 1 Notes					
1.	1 st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.					
	<u>B1</u>	$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$ outside brackets or $\frac{1}{8}$ as candidate's constant term in their binomial expansion.					
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified,					
		Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$					
	or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.						
	1 st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$					
	expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$.						
	(on the RHS, not necessarily the LHS) in a candidate's expansion.						
	Note You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} (5x)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$ because (kx) is not consistent. Note Incorrect bracketing: $= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x^2}{2} \right) + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x^3}{2} \right) + \dots \right]$						
		is M1A0 unless recovered.					
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.					
	3 rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$					
	SC	If a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either					
		SC: $\frac{1}{8} \left[1 - \frac{15}{2}x; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2}x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4}x^3 + \dots \right]$					
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$					
		(where λ can be 1 or omitted), where each term in the $[\dots]$ is a simplified fraction or a decimal					
	SC	Special case for the 2 nd M1 mark					
		Award Special Case 2^{nd} M1 for a correct simplified or un-simplified					
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer					
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)					
		in a candidate's expansion. Note that $k \neq 1$.					
	Note	Ignore extra terms beyond the term in x^3					
	Note	You can ignore subsequent working following a correct answer.					

Question	Scheme								Marks
Number 2.	x	1	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$	
	<i>y</i>	0	0.2625	0.659485	1.2032	1.9044	2.7726		
(a)	$\{\operatorname{At} x =$	=1.4,} y	= 0.6595 (4	4 dp)				0.6595	B1 cao
(b)	$\frac{1}{2}$ × (0.2	$2) \times \boxed{0} +$	- 2.7726+2	(0.2625 + the	eir 0.6595 +	- 1.2032 +	1.9044)]	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{10}$	[1] B1 o.e.
	{Note: '	Гhe "0"	does not ha	ve to be inclu	ided in []}		<u>For structure of</u> []	M1
	$\left\{=\frac{1}{10}\right\}$	$\left\{=\frac{1}{10}(10.8318)\right\} = 1.08318 = 1.083 (3 \text{ dp})$ anything that rounds to 1.083					A1		
			[du	1)				[3]
(c) Way 1	$\left\{ \mathbf{I} = \int x^{2} \right\}$	$^{2}\ln x\mathrm{d}x$	$\left.\right\}, \left\{\begin{array}{l} u = 1\\ \frac{\mathrm{d}v}{\mathrm{d}x} = 1\end{array}\right.$	$n x \Rightarrow \frac{du}{dx} =$ $x^2 \Rightarrow v = \frac{1}{2}$	$\left[\frac{1}{3}x^3\right]$				
	$=\frac{x^3}{2}\ln$	$x - \int \frac{x^3}{2}$	$-\left(\frac{1}{r}\right)\{dx\}$				•	$\begin{aligned} & x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\} \\ & dx\} \text{, where } \lambda, \mu > 0 \end{aligned}$	M1
	3	J 3	$x^{2} \ln x \rightarrow \frac{x^{3}}{2} \ln x - \int \frac{x^{3}}{2} \left(\frac{1}{2}\right) \left(dx\right) dx$					A1	
	$=\frac{x^3}{3}\ln x$	$x-\frac{x^3}{9}$				$\frac{x^3}{3}\ln x -$	$-\frac{x^3}{9}$, simpli	fied or un-simplified	A1
	Area (R	$(2) = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$	$\frac{x^3}{3}\ln x - \frac{x^3}{9}$	$\left]_{1}^{2}\right\} = \left(\frac{8}{3}\ln\right)$	$2-\frac{8}{9}\right)-\left(0\right)$	$\left(1-\frac{1}{9}\right)$	M mar	ent on the previous k. Applies limits of and 1 and subtracts the correct way round	dM1
	$=\frac{8}{3}\ln 2$	$-\frac{7}{9}$					$\frac{8}{3}\ln 2 - \frac{7}{9}$	or $\frac{1}{9}(24\ln 2 - 7)$	
					(0	du)	[5]
(c) Way 2	$\mathbf{I}=x^2(.$	$x\ln x - x$	$(x) - \int 2x(x)$	$\ln x - x) \mathrm{d} x$	$\begin{cases} u = x \\ \frac{\mathrm{d}v}{\mathrm{d}x} = 1 \end{cases}$	$\begin{array}{ccc} x^2 & \Rightarrow \\ nx & \Rightarrow \end{array}$	$\frac{dx}{dx} = 2x$ $v = x \ln x$	x }	
	So, 3I=	$x^2(x \ln x)$	$(x-x)+\int 2$	$x^2 \{\mathrm{d}x\}$					
	and I	$d I = \frac{1}{3}x^{2}(x \ln x - x) + \frac{1}{3}\int 2x^{2} \{dx\}$ A full method of applying $u = x^{2}, v' = \ln x$ to give $\pm \lambda x^{2}(x \ln x - x) \pm \mu \int x^{2} \{dx\}$			M1				
	and I =	$\frac{-x}{3}$ (xl)	$(x - x) + \frac{1}{3}$	$\int 2x \{dx\}$			5	$(-x) + \frac{1}{3}\int 2x^2 \{dx\}$ fied or un-simplified	A1
	$=\frac{1}{3}x^2$	$(x \ln x -$	$x) + \frac{2}{9}x^3$			$\frac{x^3}{3}\ln x -$	$-\frac{x^3}{9}$, simpli	fied or un-simplified	A1
					The	en award a	M1A1 in the	e same way as above	M1 A1
									[5] 9

		Question 2 Notes							
2. (a)	B 1	0.6595 correct answer only. Look for this on the table or in the candidate's working.							
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.							
	M1	For structure of trapezium rule							
	Note	No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y ordinate].							
	A1	anything that rounds to 1.083							
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)							
	Note	l marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594							
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$							
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly							
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)							
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2.7726) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044)$ (answer of 8.33646)							
	Altern	ative method: Adding individual trapezia							
	Area ≈	$0.2 \times \left[\frac{0+0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2}\right] = 1.08318$							
	B1	0.2 and a divisor of 2 on all terms inside brackets							
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2							
	A1	anything that rounds to 1.083							
(c)	A1 Note	Exact answer needs to be a two term expression in the form $a \ln b + c$ Give A1 e.g. $\frac{8}{3} \ln 2 - \frac{7}{9}$ or $\frac{1}{9} (24 \ln 2 - 7)$ or $\frac{4}{3} \ln 4 - \frac{7}{9}$ or $\frac{1}{3} \ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3} \ln 2$							
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.							
	Note	Give final A0 for a final answer of $\frac{8\ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{1}{3}\ln 1 - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{8}{9} + \frac{1}{9}$							
		or $\frac{8}{3}\ln 2 - \frac{7}{9} + c$							
	Note	or $\frac{8}{3}\ln 2 - \frac{7}{9} + c$ $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0							
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)							
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$							
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"							
		da da a							

Question Number	Scheme		Notes	Marks	
3.	$2x^2y + 2x + 4y - \cos(\pi y) = 17$				
(a) Way 1	$\left\{ \underbrace{\underbrace{\underbrace{4xy}}_{\underbrace{xx}} \times \right\} \left(\underbrace{4xy + 2x^2 \frac{dy}{dx}}_{\underbrace{xy}} \right) \underbrace{+2 + 4 \frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx}}_{\underbrace{xy}}$	$\frac{y'}{c} = 0$		M1 <u>A1</u> <u>B1</u>	
	$\frac{dy}{dx}(2x^2 + 4 + \pi\sin(\pi y)) + 4xy + 2 = 0$			dM1	
	$\left\{\frac{dy}{dx} = \right\} \frac{-4xy-2}{2x^2+4+\pi\sin(\pi y)} \text{ or } \frac{4xy+2}{-2x^2-4-\pi\sin(\pi y)}$	$h(\pi y)$	Correct answer or equivalent	A1 cso [5]	
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\rm T} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin(\frac{1}{2}\pi)} \left\{ = \frac{-8}{22 + \pi} \right\}$ Substituting $x = 3$ & $y = \frac{1}{2}$ into an equation involving $\frac{\mathrm{d}y}{\mathrm{d}x}$				
	$m_{\rm N} = \frac{22 + \pi}{8}$ Applying $m_{\rm N} = \frac{-1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$ Can be implied by later working			M1	
	$\Rightarrow y = \left \frac{22 + n}{2} \right x + \frac{1}{2} - \frac{33 + 2n}{2}$	with a numer	$y - \frac{1}{2} = m_{N}(x - 3) \text{ or}$ where $\frac{1}{2} = (\text{their } m_{N})3 + c$ ical $m_{N} \ (\neq m_{T})$ where m_{N} is and sets $y = 0$ in their normal equation.	dM1	
	So, $\left\{x = \frac{-4}{22 + \pi} + 3 \Rightarrow\right\} x = \frac{3\pi + 62}{\pi + 22}$	$\frac{3\pi + 62}{\pi + 22}$	or $\frac{6\pi + 124}{2\pi + 44}$ or $\frac{62 + 3\pi}{22 + \pi}$	A1 o.e.	
				9	
(a) Way 2	$\left\{ \underbrace{\frac{\partial \mathbf{x}}{\partial \mathbf{y}}}_{\mathbf{x}} \times \right\} \left(\underbrace{4xy \frac{dx}{dy} + 2x^2}_{\mathbf{x}} \right) + 2\frac{dx}{dy} + 4 + \pi \sin(\pi y) =$	0		M1 <u>A1</u> <u>B1</u>	
	$\frac{dx}{dy}(4xy+2) + 2x^2 + 4 + \pi\sin(\pi y) = 0$			dM1	
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$ Correct answer or equivalent				
	Question 3 Notes				
3. (a)	Note Writing down <i>from no working</i> • $\frac{dy}{dx} = \frac{-4xy-2}{2x^2+4+\pi\sin(\pi y)}$ or $\frac{4xy+2}{-2x^2-4-\pi\sin(\pi y)}$ scores M1A1B1M1A1 • $\frac{dy}{dx} = \frac{4xy+2}{2x^2+4+\pi\sin(\pi y)}$ scores M1A0B1M1A0				
	Note Few candidates will write $4xydx + 2x^2dy + 2dx$ $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or equivalent. This	•	,		

		Question 3 Notes Continued							
3. (a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \rightarrow 4\frac{dy}{dx}$ or $-\cos(\pi y) \rightarrow \pm \lambda \sin(\pi y)\frac{dy}{dx}$							
		(Ignore $\left(\frac{dy}{dx}\right)$). λ is a constant which can be 1.							
	1 st A1	$2x + 4y - \cos(\pi y) = 17 \rightarrow 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = 0$							
	Note	$4xy + 2x^2\frac{\mathrm{d}y}{\mathrm{d}x} + 2 + 4\frac{\mathrm{d}y}{\mathrm{d}x} + \pi\sin(\pi y)\frac{\mathrm{d}y}{\mathrm{d}x} \rightarrow 2x^2\frac{\mathrm{d}y}{\mathrm{d}x} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + \pi\sin(\pi y)\frac{\mathrm{d}y}{\mathrm{d}x} = -4xy - 2$							
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.							
	B1	$2x^2y \to 4xy + 2x^2\frac{\mathrm{d}y}{\mathrm{d}x}$							
	Note	If an extra term appears then award 1 st A0.							
	dM1	Dependent on the first method mark being awarded.							
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.							
		ie. $\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$							
	Note	Writing down an extra $\frac{dy}{dx} = \dots$ and then including it in their factorisation is fine for dM1.							
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.							
	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.							
(a) (b)	Way 2 1 st M1	Apply the mark scheme for Way 2 in the same way as Way 1.							
(0)	1 1/11	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of							
		substituting $y = \frac{1}{2}$. E.g. "-4xy" \rightarrow "-6" in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear							
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.							
	3 rd M1	<i>is dependent on the first M1.</i> The 2 nd M1 mark can be implied by later working.							
	Note	The 2 nd M1 mark can be implied by later working.							
		Eg. Award 2 nd M1 3 rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$							
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.							
		But, $\sin \pi$ by itself or $\sin\left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.							
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.							

Question Number	Scheme	Notes	Marks
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$		
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$ or $\pm k \to \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	1122 2^{11}	$\ln x = -\frac{5}{2}t + c, \text{ including "+}c"$	A1
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	60 Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{-\frac{5}{2}t}$	
	$\ln x = -\frac{5}{2}t + \ln 60 \implies x = 60e^{-\frac{5}{2}t} \text{ or } x$	$= \frac{e^{\frac{2}{2}t}}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$	Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	B1
	$t = -\frac{2}{5}\ln x + c$	Example 1 Integrates both sides to give either $t =$ or $\pm \alpha \ln px; \alpha \neq 0, p > 0$	M1
		$t = -\frac{2}{5}\ln x + c, \text{ including "+}c"$	A1
	$\left\{t = 0, x = 60 \Rightarrow\right\} c = \frac{2}{5}\ln 60 \Rightarrow t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60$ Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{2^{\frac{5}{2}t}}$		
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x = 60e^{-\frac{3}{2}t}} \text{ or }$	$\frac{x = \frac{60}{e^{\frac{5}{2}t}}}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$	Ignore limits	[4] B1
, , uy e		Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$	M1
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$	or $\pm k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0$ $\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ including the correct limits	A1
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}t}$ or x	$= \frac{60}{e^{\frac{5}{2}t}}$ Correct algebra leading to a correct result	A1 cso
			[4]
(b)	20 = 60e ^{$-\frac{5}{2}t$} or $\ln 20 = -\frac{5}{2}t + \ln 60$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0	M1
	$\{= 0.4394449(days)\}$	dependent on the previous M mark ses correct algebra to achieve an equation of the form of either $t = A \ln\left(\frac{60}{20}\right)$ or $A \ln\left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln\left(\frac{1}{3}\right)$ o.e. or = $A(\ln 20 - \ln 60)$ or $A(\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	dM1
	$\Rightarrow t = 632.8006 = 633$ (to the nearest	minute) awrt 633 or 10 hours and awrt 33 minutes by $t = awrt 0.44$ from no incorrect working.	A1 cso
			7

Question Number		Scheme		Notes	Marks		
4.	-	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$					
(a) Way 4		$\frac{dx}{dx} = -\int dt$	be in	es variables as shown. dx and dt should not the wrong positions, though this mark can be d by later working. Ignore the integral signs.	B1		
		$\frac{2}{5}\ln(5x) = -t + c$	Int	tegrates both sides to give either $\pm \alpha \ln(px)$ $\rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0; p > 0$	M1		
		5	$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1			
		$x = 60 \Rightarrow \frac{2}{5} \ln 300 = c$		Finds their c and uses correct algebra			
	$\frac{2}{5}\ln(5$	$f(x) = -t + \frac{2}{5} \ln 300 \implies x = 60e^{-\frac{5}{2}}$	or	to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$			
	$x = \frac{60}{e^{\frac{5}{2}}}$	<u>)</u>		with no incorrect working seen	A1 cso		
	()				[4]		
(a) Way 5	$\begin{cases} \frac{\mathrm{d}t}{\mathrm{d}x} = \end{cases}$	$-\frac{2}{5x} \Rightarrow $ $t = \int_{60}^{x} -\frac{2}{5x} dx$		Ignore limits	B1		
				tegrates both sides to give either $\pm k \rightarrow \pm kt$	M1		
		$t = \left[-\frac{2}{5} \ln x \right]_{x}^{x}$	(with	M1			
			$t = \left[-\frac{2}{5} \ln x \right]_{60}^{x}$ including the correct limits		A1		
	-	$\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln x$	160				
	$\Rightarrow \underline{x} =$	$60e^{\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$		Correct algebra leading to a correct result	A1 cso		
			Ques	stion 4 Notes	[4]		
4. (a)	B1	For the correct separation of vari	-				
	Note	B1 can be implied by seeing eith	her $\ln x =$	$-\frac{5}{2}t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without	+ <i>c</i>		
	Note	B1 can also be implied by seeing	$g\left[\ln x\right]_{60}^{x} =$	$=\left[-\frac{5}{2}t\right]_{0}^{t}$			
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or x	$=\frac{60}{\sqrt{e^{5t}}}$ wi	ith no incorrect working seen			
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	$\rightarrow x = 60$	$e^{-\frac{5}{2}t}$			
	Note		Tinal A0 for writing $x = e^{-\frac{5}{2}t + \ln 60}$ as their final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)				
	Note	Way 1 to Way 5 do not exhaust a	all the diffe	erent methods that candidates can give.			
	Note	Give B0M0A0A0 for writing do	wn $x = 60$	$e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working of	or integration		
(b)	A1	seen. You can apply cso for the work of	nly seen i	n part (h)			
	Note	_		wed by $t = a wrt 633$ from no incorrect working	lg.		
	Note	Substitutes $x = 40$ into their equ			<i>ی</i> .		
	11010	β substitutes $\lambda = 40$ into their equ	anon nom	i part (a) is iviouivioau			

Question Number		Scheme	Notes	Marks		
5.	x = 4 ta	an t , $y = 5\sqrt{3}\sin 2t$, $0 \le t < \frac{\pi}{2}$				
(a) Way 1	Gi a	$ec^{2}t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\frac{0\sqrt{3}\cos 2t}{4\sec^{2}t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^{2}t \right\}$	Either both x and y are differentiated correctly with respect to tor their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1		
	$\rightarrow dx^{-}$	$4\sec^2 t$ $\left[2 \sqrt{3} \cos^2 t \cos^2 t \right]$	Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe		
	$\left\{ \operatorname{At} P \left(4 \right) \right\}$	$\sqrt{3}, \frac{15}{2}, t = \frac{\pi}{3}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{2}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{15}{5}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso		
(b)	$ \begin{cases} 10\sqrt{3}\cos^2\theta \end{cases} $	$52t = 0 \Longrightarrow t = \frac{\pi}{4} \bigg\}$		[4]		
	So $x = 4$ ta	$\operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right)$	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = awrt 8.7$	M1		
	Coordinate	es are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1		
				[2] 6		
5. (a)	1 st A1		Existion 5 Notes $\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$			
	Note	Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$				
	Note	Give the final A0 for more than one	value stated for $\frac{dy}{dx}$			
(b)	Note	Also allow M1 for either $x = 4 \tan(4x)$				
	Note Note	M1 can be gained by ignoring previo Give A0 for stating more than one se				
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by				

Question Number	Scheme		Notes	Marks
5.	$x = 4 \tan t$, $y = 5\sqrt{3}\sin 2t$, $0 \le t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \implies \sin t = \frac{x}{\sqrt{x^2 + 16}}, \ \cos t = \frac{4}{\sqrt{x^2 + 16}} \implies t$	$v = \frac{40\sqrt{3}x}{x^2 + 16}$		
	$\begin{cases} u = 40\sqrt{3}x \qquad v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} \qquad \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2+16)\pm Bx^2}{(x^2+16)^2}$	M1
	dx $(x^2 + 16)^2$ $(x^2 + 16)^2$	Correct $\frac{dy}{dx}$; simple	blified or un-simplified	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	dependent on the previous M mark Some evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$		
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		from a	correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A \cos \theta$	$s\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	dx $((4))(1+(\frac{x}{4})^2)(4)$	Correct $\frac{dy}{dx}$; simplified or un-simplified.		A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{=5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}$	$\left \left(\frac{1}{4}\right) \right \qquad \text{Some } e$	dependent on the previous M mark vidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$ correct solution only	A1 cso
			correct solution only	[4]

Question Number	Scheme			N	Jotes	Marks
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy, \ y > 0$, (ii) $\int_{0}^{3} \sqrt{\left(\frac{3y-4}{4}\right)^{3}} dy$	$\frac{\overline{x}}{-x}$ dx, x =	$=4\sin^2\theta$			
(i) Way 1	$\frac{3y-4}{v(3y+2)} \equiv \frac{A}{v} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y+2)$	(+2) + By		A t 100	See notes	M1
Way 1	$y(3y+2) y (3y+2)$ $y=0 \implies -4=2A \implies A=-2$, .			st one of their their $B = 9$	A1
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$			A = -2 and	Both their $B = 9$	A1
			Integrates to g	_		
	$\int 3v - 4$, $\int -2$ 9	$\frac{A}{y} \rightarrow$	$\pm \lambda \ln y$ or $\frac{1}{(}$	$\frac{B}{3y+2} \rightarrow 3$		M1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$	A / 1		41 6 11	$A \neq 0, B \neq 0$	
		At lea	st one term co fro		r from their <i>B</i>	A1 ft
	$= -2\ln y + 3\ln(3y+2) \{+c\}$	$-2\ln y +$	$3\ln(3y+2)$		•	A.1
		simpl	lified or un-si		ct bracketing, an apply isw.	A1 cao
		- r				[6]
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{dx}{d\theta} = 8\sin\theta\cos\theta \text{ or } \frac{dx}{d\theta} = 4\sin2\theta \text{ or } dx = 8\sin\theta\cos\theta d\theta$			B1		
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ \mathrm{d}\theta \right\} \text{ or } \int \sqrt{\frac{4}{4-\theta}}$	$\frac{\sin^2\theta}{4\sin^2\theta}.4\sin^2\theta$	$n2 heta\left\{d heta ight\}$			M1
	$= \int \underline{\tan \theta} \cdot 8\sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4\sin 2\theta$	$P\left\{ \mathrm{d}\theta\right\}$	$\sqrt{\left(\frac{x}{4-x}\right)} \to \pm K \tan \theta \text{ or } \pm K \left(\frac{\sin \theta}{\cos \theta}\right)$		<u>M1</u>	
	$= \int 8\sin^2\theta \mathrm{d}\theta$		∫8	$\sin^2\theta\mathrm{d} heta$	including $d\theta$	A1
	$3 = 4\sin^2\theta$ or $\frac{3}{4} = \sin^2\theta$ or $\sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta =$	π	Writes	down a co	rrect equation	
		3	involving $x =$	= 3 leading	to $\theta = \frac{\pi}{3}$ and	B1
	$\left\{ x = 0 \to \theta = 0 \right\}$	n	no incorrect work seen regarding limits			
	$\mathbf{f}(1 \cos 2\theta) = (\mathbf{f})$					[5]
(ii) (b)	$= \left\{8\right\} \int \left(\frac{1-\cos 2\theta}{2}\right) d\theta \left\{=\int \left(4-4\cos 2\theta\right) d\theta\right\}$	$\theta \Big\}$			$\theta = 1 - 2\sin^2 \theta$ l. (See notes)	M1
	(1 1)				$n2\theta, \alpha, \beta \neq 0$	M1
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\}$		sin	$a^2 \theta \rightarrow \left(\frac{1}{2}\right)$	$\theta - \frac{1}{4}\sin 2\theta$	A1
	$\left\{\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta \mathrm{d}\theta = 8\left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}\right\} = 8\left[\left(\frac{\pi}{6} + \frac{1}{6}\sin 2\theta\right)_{0}^{\frac{\pi}{3}}\right] = 8\left[\left(\frac{\pi}{6} + \frac{1}{6}\sin 2\theta\right)_{0}^{\frac{\pi}{3}}\right]$	$-\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)\right)-$	$\left(0+0\right)$			
	$=\frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact answ	ver of e.g. $\frac{4}{3}\pi$	$r - \sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}(4\pi-3\sqrt{3})$	A1 o.e.
						[4]
						15

		Question 6 Notes
6. (i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their <i>A</i> or their <i>B</i> .
	Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give 2 nd M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$
6. (ii)(a)	1 st M1	Substitutes $x = 4\sin^2\theta$ and their $dx \left(\text{from their correctly rearranged } \frac{dx}{d\theta}\right)$ into $\sqrt{\left(\frac{x}{4-x}\right)} dx$
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K\tan\theta$ or $\pm K\left(\frac{\sin\theta}{\cos\theta}\right)$
	Note	Integral sign is not needed for this mark.
	1 st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen
		regarding limits
	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$
	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3, \theta = \frac{\pi}{3}; x = 0, \theta = 0$
(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
	1 st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.
		Can be implied by $k \sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.
	2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)
		then the final A1 is available for a correct solution in part (ii)(b).

	Scheme		Notes	Marks
6. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6y}{y(3y+2)} \mathrm{d}y = \int \frac{3y+6y}{y(3y+2)} \mathrm{d}y + \int \frac{3y+6y}{y(3y+2)} \mathrm{d}y = \int 3y$	$\frac{5}{2}$ dy		
	$\frac{3y+6}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \implies 3y+6 = A(3y)$	(y + 2) + By	See notes	M1
	$y(3y+2) y (3y+2)$ $y=0 \Rightarrow 6=2A \Rightarrow A=3$		At least one of their $A = 3$ or their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$= \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3}{y} \mathrm{d}y + \int \frac{6}{(3y+2)} \mathrm{d}y$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$		$ln(3y^{2}+2y) - 3ln y + 2ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{y(3y+1)} \mathrm{d}y = \int \frac{3y+1}{y(3y+1)} \mathrm{d}y = \int \frac{3y+1}{y(3y+1)$	$\overline{2}$ dy		
	$\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \implies 5 = A(3y+2) + C$	⊦ By	See notes	M1
	$y=0 \implies 5=2A \implies A=\frac{5}{2}$		At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
	$\int \frac{3y-4}{y(3y+2)} dy$ = $\int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{2} \frac{15}{y} dy + \int \frac{15}{2} \frac{15}{(3y+2)} dy$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y^{-3y} \int y^{-3y} \int (3y+2)^{-3y}$	At lea	ast one term correctly followed through	A1 ft
	$= \frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2) \{+c\}$		$\frac{1}{2}\ln(3y^2+2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao [6]
L	<u>l</u>			ניין

	Scheme		Notes		
6. (i)	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$	— d v			
Way 4					
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y = \int \frac{4}{y(3y+2)}$	$\overline{2}$ dy			
	$\frac{4}{v(3v+2)} \equiv \frac{A}{v} + \frac{B}{(3v+2)} \implies 4 = A(3y+2) + C$	- By		See notes	M1
			their $A = 2$ or	At least one of their $B = -6$	A1
	$y = 0 \implies 4 = 2A \implies A = 2$				
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 2$ and	their $B = -6$	A1
	•	C	Integrates to give at leas		
	$\left(\frac{3y-4}{y(3y+2)}\right)$ dy	$\frac{c}{(3y+2)}$	$\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y}$	$\rightarrow \pm \lambda \ln y$ or	24
	$\int y(3y+2)$		$\frac{B}{B} \rightarrow 0$	$\pm \mu \ln(3y+2),$	M1
	$= \int \frac{3}{3y+2} \mathrm{d}y - \int \frac{2}{y} \mathrm{d}y + \int \frac{6}{(3y+2)} \mathrm{d}y$		(-))	$B \neq 0, C \neq 0$	
	J $3y + 2$ J y J $(3y + 2)$ J		ast one term correctly fol	llowed through	A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \{+c\}$		$\ln(3y+2) - 2\ln y$		
	= m(3y+2) - 2my + 2m(3y+2) (+ c)		with correct bracketing, simplified or un-simplified		A1 cao
					[6]
	Alternative methods for B1M1M1A1 in (ii)(a)				
(ii)(a) Way 2	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$	As in Way 1			B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ \mathrm{d}\theta \right\}$			As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ \mathrm{d}\theta \right\}$				
	$= \int \frac{\sin\theta}{\sqrt{(1-\sin^2\theta)}} \cdot 8\sqrt{(1-\sin^2\theta)}\sin\theta \left\{ d\theta \right\}$				
	$= \int \sin\theta \cdot 8\sin\theta \left\{ \mathrm{d}\theta \right\}$		Correct method leading to $\sqrt{(1-\sin^2\theta)}$ being cancelled out		M1
	$= \int 8\sin^2\theta \mathrm{d}\theta$	$\int 8\sin^2\theta \mathrm{d}\theta \text{includin}$		including $d\theta$	A1 cso
(ii)(a) Way 3	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$			As in Way 1	B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$)			
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ \mathrm{d}\theta \right\}$				M1
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} =$	$\int \frac{2-2cc}{\sqrt{4-4c}}$	$\frac{\cos 2\theta}{\cos^2 2\theta} \cdot 4\sin 2\theta \left\{ \mathrm{d}\theta \right\}$		
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) d\theta$		Correct me	thod leading to g cancelled out	M1
	$= \int 8\sin^2\theta \mathrm{d}\theta$		$\int 8\sin^2\theta \mathrm{d}\theta$	including $d\theta$	A1 cso

Question Number	Scheme			Notes		Marks
7.	$y = (2x - 1)^{\frac{3}{4}}, x \ge \frac{1}{2}$ passes though	P(k, 8)				
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x\pm 1)^{\frac{3}{2}}$	$\rightarrow \pm \lambda (2x \pm 1)$ where $u = 2$		M1
		$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or withc	out + c. Must be	e simplified.	A1
				2	2	[2]
(b)	${P(k, 8) \Rightarrow} 8 = (2k - 1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{4}{3}} + 1}{2}$			$(-1)^{\frac{3}{4}}$ or $8 = (2)^{\frac{3}{4}}$ = (or $x=$) a nume		M1
	So, $k = \frac{17}{2}$			<i>k</i> (or <i>x</i>) =	$=\frac{17}{2}$ or 8.5	A1
						[2]
(c)	$\pi \left[\left((2x-1)^{\frac{3}{4}} \right)^2 dx \right]$		For $\pi \int \left((2 - 1)^{2} \right)^{2} dx$	$(2x-1)^{\frac{3}{4}} \Big)^2$ or π	$\tau \int (2x-1)^{\frac{3}{2}}$	B1
			Ignore lim	nits and dx . Can	be implied.	
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x \right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{1}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$	$\left\{=\frac{1024}{5}\right\}$	to part (b))	limits of "8.5" (1) and 0.5 to an expression $+ \beta(2x - 1)^{\frac{3}{2}}$	xpression of	M1
			the form $\pm \beta (2x-1)^{\overline{2}}$; $\beta \neq 0$ and subtracts the correct way round.			
	Note: It is not necessary to write the -0 "			• /		
	$\left\{V_{\text{cylinder}}\right\} = \pi(8)^2 \left(\frac{17}{2}\right) \left\{= 544\pi\right\}$			8) ² (their answer $_{der} = 544\pi$ implie	/	B1 ft
	$\left\{ \operatorname{Vol}(S) = 544\pi - \frac{1024\pi}{5} \right\} \Longrightarrow \operatorname{Vol}(S) = \frac{16}{5}$	$\frac{696}{5}\pi$		$\frac{1696}{5}\pi, \frac{3392}{10}\pi$		A1
				5 10		[4]
Alt. (c)	$Vol(S) = \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \int_{0.5}^{8.5} \left(8^{2} - (2x-1)^{\frac{3}{2}}\right)^{\frac{3}{2}}$	dx		For <u>π</u> ∫	$\dots \underline{(2x-1)^{\frac{3}{2}}}$	
		/		Ignore lin	mits and dx.	
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x-1)^{\frac{5}{2}}\right]_{0}^{\frac{5}{2}}$	3.5				
		5) (, 1	5))	as above	M1
	$= \pi(8)^2 \left(\frac{1}{2}\right) + \underline{\pi}\left(\left(\underbrace{\underline{64("8.5")}}_{-1} - \frac{1}{5}(2(10))\right)\right)$	$(8.5)-1)^{\overline{2}} - ($	$64(0.5) - \frac{1}{5}($	$(2(0.5)-1)^{\overline{2}}$		<u>B1</u>
	$\left\{=32\pi + \pi \left(\left(544 - \frac{1024}{5}\right) - \left(32 - 0\right)\right)\right\} \Longrightarrow \operatorname{Vol}(S) = \frac{1696}{5}\pi$				A1	
		-				[4]
						8

		1	Questio	n 7 Notes		
7. (b)	SC	Allow Special Case SC M1 for a	a candida	te who sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$	and	
		rearranges to give $k = (\text{or } x =)$ a	numerica	l value.		
7. (c)	M1	Can also be given for applying u	e-limits of	f "16" (2("part (b) ") – 1) and 0 to an expre	ssion of the	
		form $\pm \beta u^{\frac{5}{2}}$; $\beta \neq 0$ and subtracts	the corre	ect way round.		
	Note	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]$	$\begin{bmatrix} \frac{17}{2} \\ \frac{1}{2} \end{bmatrix}_{\frac{1}{2}}^{\frac{17}{2}} = \frac{10}{2}$	<u>24</u> 5		
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{0}^{\frac{17}{2}} = \left($	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{0}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5}\right) - (0)\right)$			
	B1ft	*		linder with radius 8 and their (part (b)) heig		
	Note	to give a correct expression for i	If a candidate uses integration to find the volume of this cylinder they need to apply their limits to give a correct expression for its volume.			
		So $\pi \int_0^{8.5} 8^2 dx = \pi [64x]_0^{8.5}$ is not	So $\pi \int_{0}^{8.5} 8^2 dx = \pi \left[64x \right]_{0}^{8.5}$ is not sufficient for B1 but $\pi (64(8.5) - 0)$ is sufficient for B1.			
7.	MISREAI	DING IN BOTH PARTS (B) AN	D (C)			
	Apply the	misread rule (MR) for candidates v	who apply	$y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)		
(b)	$\Big\{P(k,8)=$	$\Rightarrow \ 8 = (2k-1)^{\frac{3}{2}} \Rightarrow k = \frac{8^{\frac{2}{3}} + 1}{2}$	Sets $8 = (2k-1)^{\frac{3}{2}}$ or $8 = (2x-1)^{\frac{3}{2}}$ and rearranges to give $k = (\text{or } x =)$ a numerical value. M1			
		So, $k = \frac{5}{2}$		$k (\text{or } x) = \frac{5}{2} \text{ or } 2.5$	A1	
(c)	$\pi \int \left(\left(2x - 1 \right)^{\frac{3}{2}} \right)^2 \mathrm{d}x$			For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	[2] B1	
	$\left\{\int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x\right\} = \left[\frac{(2x-1)^4}{8}\right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8}\right) - (0)\right)$		= 32}	Ignore limits and dx. Can be implied. Applies x-limits of "2.5" (their answer to part (b)) and 0.5 to an expression of the form $\pm\beta(2x-1)^4$; $\beta \neq 0$ and subtracts the correct way round.	M1	
	$V_{\rm cylinder} = \pi$	$(8)^2 \left(\frac{5}{2}\right) \left\{= 160\pi\right\}$		$\pi(8)^2$ (their answer to part (b)) Sight of 160 π implies this mark	B1 ft	
	$\left\{ \operatorname{Vol}(S) = \right.$	$160\pi - 32\pi \} \Rightarrow \operatorname{Vol}(S) = 128\pi$		An exact correct answer in the form $k\pi$ E.g. 128π	A1	
	de E	Iark parts (b) and (c) using the mar educt two from any A or B marks g .g. (b) M1A1 (c) B1M1B1A1 w .g. (b) M1A1 (c) B1M1B0A0 w	gained. ould scor		[4] t (b)	
	Note If a candidate uses $y = (2x - 1)^{\frac{3}{4}}$ in part (b) and then uses $y = (2x - 1)^{\frac{3}{2}}$ in part (c) do not apply a misread in part (c).					

Question Number	Scheme		Notes	Marks	
8.	$l_1: \mathbf{r} = \begin{pmatrix} 8\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -5\\4\\3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5\\4\\3 \end{pmatrix}. \qquad \overrightarrow{OA} \text{ occurs when } \mu = 1. \overrightarrow{OP} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}$				
(a)	<i>A</i> (3, 5, 0)		(3, 5, 0)	B1	
(b)	$\{l_2:\}\mathbf{r} = \begin{bmatrix} 5\\2 \end{bmatrix} + \lambda \begin{bmatrix} 4\\3 \end{bmatrix}$	th either $\mathbf{a} = \mathbf{i} + 5$	$\mathbf{a} + \mu \mathbf{d}$, $\mathbf{a} + t\mathbf{d}$, $\mathbf{a} \neq 0$, $\mathbf{d} \neq 0$ $\mathbf{j} + 2\mathbf{k}$ or $\mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, or a multiple of $-5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$	M1	[1]
			using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$	A1	
	\mathbf{d}_2 is the direction vector of l_2 Do r	tot allow l_2 : or l_2	$l_2 \rightarrow \text{ or } l_1 = \text{ for the A1 mark.}$		[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} - \begin{pmatrix} 3\\5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$				
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$		Full method for finding AP	M1	
	$2\mu = \sqrt{(-2)} + (0) + (2) = \sqrt{0} - 2\sqrt{2}$		2√2	A1	
		(5) Re	alisation that the dot product is		[2]
(d)	So $\overline{AP} = \begin{bmatrix} -2\\ 0\\ 2 \end{bmatrix}$ and $\mathbf{d}_2 = \begin{bmatrix} -5\\ 4\\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -2\\ 0\\ 2 \end{bmatrix}$		required between $\left(\overline{AP} \text{ or } \overline{PA}\right)$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	M1	
	$\left\{\cos\theta = \right\} \frac{\overrightarrow{AP} \bullet \mathbf{d}_2}{\left \overrightarrow{AP}\right \cdot \left \mathbf{d}_2\right } = \frac{\pm \left(\begin{pmatrix} -2\\0\\2 \end{pmatrix} \bullet \begin{pmatrix} -5\\4\\3 \end{pmatrix} \right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2}}$	$\frac{1}{2^{2} + (4)^{2} + (3)^{2}}$	dependent on the previous M mark. Applies dot product formula between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K \mathbf{d}_2 \text{ or } \pm K \mathbf{d}_1$	dM1	
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$		$\left\{\cos\theta\right\} = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$	A1 cso	
(e)	$\left\{\text{Area } APE = \right\} \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin\theta \qquad \frac{1}{2}$	(their $2\sqrt{2}$) ² sin θ	or $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin(their θ)	M1	[3]
	= 2.4		2.4 or $\frac{12}{5}$ or $\frac{24}{10}$ or awrt 2.40	A1	
	\overline{DE} (51): + (41): + (21)E and \overline{DE} (4):		、		[2]
(f)	$\overline{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k} \text{ and } PE = \text{thei}$ $\left\{PE^2 = \right\} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2$		This mark can be implied.	M1	
	$\begin{cases} 12 - \frac{1}{2} (-3\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 - (10012\sqrt{2})^2 \\ \frac{1}{2} \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \\ \lambda = \pm \frac{2}{5} \end{cases}$	-)	Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$		
	$l_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$	depend	$\frac{5}{\text{dent on the previous M mark}}$ Substitutes at least one of their values of λ into l_2 .	dM1	
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{4} \end{pmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \ \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{pmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$	At	least one set of coordinates are correct.	A1	
	$\left(\begin{array}{c} \frac{4}{5} \end{array}\right) \left(\begin{array}{c} 0.8 \end{array}\right) \left(\begin{array}{c} \frac{16}{5} \end{array}\right) \left(\begin{array}{c} 3.4 \end{array}\right)$	Both	sets of coordinates are correct.	A1	
					[5] 15
				1	10

		Question 8 Notes		
		$\begin{pmatrix} 3 \end{pmatrix}$ 3		
8. (a)	B1	Allow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ or benefit of the doubt $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$		
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l_2 = \mathbf{or} \ Line 2 =$		
		i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where d is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.		
	Note	Allow the use of parameters μ or <i>t</i> instead of λ .		
(c)	M1	Finds the difference between \overline{OP} and their \overline{OA} and applies Pythagoras to the result to find AP		
	Note	Allow M1A1 for $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.		
(d)	Note	For both the M1 and dM1 marks \overrightarrow{AP} (or \overrightarrow{PA}) must be the vector used in part (c) or the difference \overrightarrow{OP} and their \overrightarrow{OA} from part (a).		
	Note	Applying the dot product formula correctly without $\cos\theta$ as the subject is fine for M1dM1		
	Note	<i>Evaluating</i> the dot product (i.e. $(-2)(-5) + (0)(4) + (2)(3)$) is not required for M1 and dM1 marks.		
	Note	In part (d) allow one slip in writing \overrightarrow{AP} and \mathbf{d}_2		
	Note	$\cos \theta = \frac{-10+0-6}{\sqrt{8}\sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso		
	Note	Give M1dM1A1 for $\{\cos \theta = \} = \frac{\begin{pmatrix} -2\\0\\2 \end{pmatrix}}{\sqrt{8}.10\sqrt{2}} = \frac{20+12}{40} = \frac{4}{5}$		
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta = 0.8$ followed by 36.869°		
		ve Method: Vector Cross Product		
	Only app	ly this scheme if it is clear that a candidate is applying a vector cross product method. Realisation that the vector		
	$\overline{AP} \times \mathbf{d}_2$	$= \underbrace{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}}_{\times} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}_{\times} = \left\{ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k} \right\} $ (Keansation that the vector cross product is required between their $\left(\overline{AP} \text{ or } \overline{PA}\right)$ and $\pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$ (M1)		
	sin	$\theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}} \qquad \qquad \begin{array}{c} \text{Applies the vector product} \\ \text{formula between their} \\ \left(\overline{AP} \text{ or } \overline{PA}\right) \text{ and } \pm K \mathbf{d}_2 \text{ or } \pm K \mathbf{d}_1 \end{array} \mathbf{dM1}$		
		$\sin \theta = \frac{12}{\sqrt{8} \cdot \sqrt{50}} = \frac{3}{5} \Rightarrow \underline{\cos \theta} = \frac{4}{5} \qquad \qquad \cos \theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20} \text{ A1}$		
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40		
	Note	Candidates must use their θ from part (d) or apply a correct method of finding their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$		

		Question 8 Notes Contin				
8. (f)	Note	Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda =$	$-\frac{2}{5}$ from no incorrect working			
	SC	Allow special case 1^{st} M1 for $\lambda = 2.5$ from compa	aring lengths or from no working			
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their})^2$	$r 2\sqrt{2}$)			
	Note	Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\lambda)^2$	$2\sqrt{2}$) or equivalent			
	Note	Give 1 st M1 for $\lambda = \frac{\text{their } AP = 2\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$				
	Note	So $\left\{ \hat{\mathbf{d}}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\}$ "vector" = $\frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ is M1A1				
	Note	The 2 nd dM1 in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from their values of λ .				
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.				
	CAREFUL	Putting l_2 equal to A gives				
		$ \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix} = \begin{pmatrix} 3\\5\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5}\\\lambda = 0\\\lambda = -\frac{2}{3} \end{pmatrix} $ Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method				
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overline{AP}$ gives				
		$\begin{pmatrix} -5 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} \lambda = -2 \end{pmatrix}$				
		$ \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.			
	General	$\lambda \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{bmatrix}$ You can follow through the part (c) answer of their for (d) M1dM1, (e) M1, (f) M1dM1	using $\lambda = -\frac{2}{5}$ from this incorrect method.			